# Efficient Identification of Butterfly Sparse Matrix Factorizations 

Léon Zheng, Elisa Riccietti, Rémi Gribonval

March 2 - SIAM CSE 2023

## valeo.ai <br> 

## Sparse matrix factorization

Given a matrix $\mathbf{Z}$ and $J \geq 2$, find sparse factors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}$ such that

$$
\mathbf{Z} \approx \mathbf{X}^{(1)} \mathbf{x}^{(2)} \ldots \mathbf{x}^{(J)} .
$$

## Sparse matrix factorization

Given a matrix $\mathbf{Z}$ and $J \geq 2$, find sparse factors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}$ such that

$$
\mathbf{Z} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)} .
$$

Fast matrix-vector multiplication: $\mathbf{Z x} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)} \mathbf{x}$.

## Sparse matrix factorization

Given a matrix $\mathbf{Z}$ and $J \geq 2$, find sparse factors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}$ such that

$$
\mathbf{Z} \approx \mathbf{X}^{(1)} \mathbf{x}^{(2)} \ldots \mathbf{x}^{(J)} .
$$

Fast matrix-vector multiplication: $\mathbf{Z x} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)} \mathbf{x}$.

## Example (Fourier integral operators)

Fast evaluation of $u(x)=\sum_{k \in \Omega} e^{2 \pi i \phi(x, k)} f(k)$, for all $x \in X$ ?

## Sparse matrix factorization

Given a matrix $\mathbf{Z}$ and $J \geq 2$, find sparse factors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}$ such that

$$
\mathbf{Z} \approx \mathbf{x}^{(1)} \mathbf{x}^{(2)} \ldots \mathbf{x}^{(J)} .
$$

Fast matrix-vector multiplication: $\mathbf{Z x} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)} \mathbf{x}$.

## Example (Fourier integral operators)

Fast evaluation of $u(x)=\sum_{k \in \Omega} e^{2 \pi i \Phi(x, k)} f(k)$, for all $x \in X$ ? Factorize $\mathbf{K}:=\left(e^{2 \pi i \Phi(x, k)}\right)_{x \in X, k \in \Omega} \approx \mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}$.
[E. Candes et al., A fast butterfly algorithm for the computation of Fourier integral operators, MMS, 2009]

## Sparse matrix factorization

Given a matrix $\mathbf{Z}$ and $J \geq 2$, find sparse factors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}$ such that

$$
\mathbf{Z} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}
$$

Fast matrix-vector multiplication: $\mathbf{Z x} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)} \mathbf{x}$.

## Example (Fourier integral operators)

Fast evaluation of $u(x)=\sum_{k \in \Omega} e^{2 \pi i \Phi(x, k)} f(k)$, for all $x \in X$ ? Factorize $\mathbf{K}:=\left(e^{2 \pi i \Phi(x, k)}\right)_{x \in X, k \in \Omega} \approx \mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}$.
[E. Candes et al., A fast butterfly algorithm for the computation of Fourier integral operators, MMS, 2009]

## Example (Compress neural network)

Factorize weight matrices in overparameterized neural networks.

[T. Dao et al., Monarch: Expressive structured matrices for efficient and accurate training, ICML, 2022]

## Sparse matrix factorization

Given a matrix $\mathbf{Z}$ and $J \geq 2$, find sparse factors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}$ such that

$$
\mathbf{Z} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}
$$

Fast matrix-vector multiplication: $\mathbf{Z x} \approx \mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)} \mathbf{x}$.

## Example (Fourier integral operators)

Fast evaluation of $u(x)=\sum_{k \in \Omega} e^{2 \pi i \Phi(x, k)} f(k)$, for all $x \in X$ ? Factorize $\mathbf{K}:=\left(e^{2 \pi i \Phi(x, k)}\right)_{x \in X, k \in \Omega} \approx \mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}$.
[E. Candes et al., A fast butterfly algorithm for the computation of Fourier integral operators, MMS, 2009]

## Example (Compress neural network)

Factorize weight matrices in overparameterized neural networks.

[T. Dao et al., Monarch: Expressive structured matrices for efficient and accurate training, ICML, 2022]

## How to factorize a matrix into sparse factors?

Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(J)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?

## How to factorize a matrix into sparse factors?

Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row

## How to factorize a matrix into sparse factors?

Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row
(2) Fixed-support constraint: $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}^{(\ell)}$ for $\ell=1, \ldots, J$.

## How to factorize a matrix into sparse factors?

Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{X}^{(J)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row
(2) Fixed-support constraint: $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}^{(\ell)}$ for $\ell=1, \ldots, J$.

A difficult problem

## How to factorize a matrix into sparse factors?

Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(J)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row
(2) Fixed-support constraint: $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}^{(\ell)}$ for $\ell=1, \ldots, J$.

## A difficult problem

- Sparse coding is NP-hard.
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]


## How to factorize a matrix into sparse factors?

## Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row
(2) Fixed-support constraint: $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}^{(\ell)}$ for $\ell=1, \ldots, J$.

## A difficult problem

- Sparse coding is NP-hard.
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]
- Fixed-support setting is NP-hard for $J=2$ factors.
[Le et al., Spurious valleys, NP-hardness, and tractability of sparse matrix fact. with fixed support, SIMAX, 2022]


## How to factorize a matrix into sparse factors?

## Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row
(2) Fixed-support constraint: $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}^{(\ell)}$ for $\ell=1, \ldots, J$.

## A difficult problem

- Sparse coding is NP-hard.
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]
- Fixed-support setting is NP-hard for $J=2$ factors.
[Le et al., Spurious valleys, NP-hardness, and tractability of sparse matrix fact. with fixed support, SIMAX, 2022]
- Gradient-based methods lack guarantees.


## How to factorize a matrix into sparse factors?

## Problem formulation

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that }\left\{\mathbf{X}^{(\ell)}\right\}_{\ell} \text { are sparse. }
$$

Choices for sparsity constraint?
(1) Classical sparsity patterns: $k$-sparsity by column and/or by row
(2) Fixed-support constraint: $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}^{(\ell)}$ for $\ell=1, \ldots, J$.

## A difficult problem

- Sparse coding is NP-hard.
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]
- Fixed-support setting is NP-hard for $J=2$ factors.
[Le et al., Spurious valleys, NP-hardness, and tractability of sparse matrix fact. with fixed support, SIMAX, 2022]
- Gradient-based methods lack guarantees.

When is the problem well-posed? Uniqueness of solution? Stability? $\rightarrow$ Still an open question.

What makes the butterfly structure a good choice?
Case of square matrices of size $N=2^{J}$.

What makes the butterfly structure a good choice?
Case of square matrices of size $N=2^{J}$.
Definition (Butterfly structure)
For each $\ell \in[J]$, supp $\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$

## What makes the butterfly structure a good choice?

Case of square matrices of size $N=2^{J}$.
Definition (Butterfly structure)
For each $\ell \in[J]$, supp $\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$, where $\mathbf{S}_{\mathrm{bf}}^{(\ell)}:=\mathbf{I}_{\mathbf{2}^{\ell-1}} \otimes\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \otimes \mathbf{I}_{\mathrm{N} / \mathbf{2}^{\ell}}$.

$\mathbf{S}_{\mathrm{bf}}^{(1)}$


Example for $N=16$, with 4 factors.

What makes the butterfly structure a good choice?
Case of square matrices of size $N=2^{J}$.

## Definition (Butterfly structure)

For each $\ell \in[J]$, supp $\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$, where $\mathbf{S}_{\mathrm{bf}}^{(\ell)}:=\mathbf{I}_{\mathbf{2}^{\ell-1}} \otimes\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \otimes \mathbf{I}_{\mathrm{N} / \mathbf{2}^{\ell}}$.

$\mathbf{S}_{\mathrm{bf}}^{(1)}$



Example for $N=16$, with 4 factors.
(1) Enables fast $\mathcal{O}(N \log N)$ matrix-vector multiplication

## What makes the butterfly structure a good choice?

Case of square matrices of size $N=2^{J}$.

## Definition (Butterfly structure)

For each $\ell \in[J]$, $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$, where $\mathbf{S}_{\mathrm{bf}}^{(\ell)}:=\mathbf{I}_{\mathbf{2}^{\ell-1}} \otimes\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \otimes \mathbf{I}_{\mathrm{N} / \mathbf{2}^{\ell}}$.

$\mathbf{S}_{\mathrm{bf}}^{(1)}$

$\mathbf{S}_{\mathrm{bf}}^{(2)}$

$\mathbf{S}_{\mathrm{bf}}^{(3)}$

$\mathbf{S}_{\mathrm{bf}}^{(4)}$

Example for $N=16$, with 4 factors.
(1) Enables fast $\mathcal{O}(N \log N)$ matrix-vector multiplication
(2) Captures common fast transforms (Hadamard, DFT, DCT, ...)
[T. Dao et al., Kaleidoscope: An efficient, learnable representation for all structured linear maps, ICLR, 2020]


## What makes the butterfly structure a good choice?

Case of square matrices of size $N=2^{J}$.

## Definition (Butterfly structure)

For each $\ell \in[J]$, $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$, where $\mathbf{S}_{\mathrm{bf}}^{(\ell)}:=\mathbf{I}_{\mathbf{2}^{\ell-1}} \otimes\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \otimes \mathbf{I}_{\mathrm{N} / \mathbf{2}^{\ell}}$.

$\mathbf{S}_{\mathrm{bf}}^{(1)}$

$\mathbf{S}_{\mathrm{bf}}^{(2)}$

$\mathbf{S}_{\mathrm{bf}}^{(3)}$

$\mathbf{S}_{\mathrm{bf}}^{(4)}$

Example for $N=16$, with 4 factors.
(1) Enables fast $\mathcal{O}(N \log N)$ matrix-vector multiplication
(2) Captures common fast transforms (Hadamard, DFT, DCT, ...)
[T. Dao et al., Kaleidoscope: An efficient, learnable representation for all structured linear maps, ICLR, 2020]

(3) Makes the sparse matrix factorization problem well-posed
[L. Zheng et al., Efficient identification of butterfly sparse matrix factorizations, SIMODS, 2023]

## Overview of this talk

## Butterfly factorization problem

$$
\min _{\left.\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{()}\right)}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that } \operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)} .
$$

## Overview of this talk

## Butterfly factorization problem

$$
\min _{\mathbf{x}^{(1)}, \ldots, \mathbf{X}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad \text { such that } \operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)} .
$$

- Gradient-descent method
[Le Magouarou et al., Flexible multilayer sparse approximations of matrices and applications, JSTSP, 2016]
[T. Dao et al., Learning fast algorithms for linear transforms using butterfly factorizations, ICML, 2019.]
- Hierarchical factorization (butterfly algorithms)
[Y. Li et al., Butterfly factorization, MMS, 2015]


## Overview of this talk

## Butterfly factorization problem

$\min _{\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad$ such that $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$.

- Gradient-descent method
[Le Magouarou et al., Flexible multilayer sparse approximations of matrices and applications, JSTSP, 2016]
[T. Dao et al., Learning fast algorithms for linear transforms using butterfly factorizations, ICML, 2019.]
- Hierarchical factorization (butterfly algorithms)
[Y. Li et al., Butterfly factorization, MMS, 2015]


## Contributions

## Overview of this talk

## Butterfly factorization problem

$\min _{\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(J)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad$ such that $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$.

- Gradient-descent method
[Le Magouarou et al., Flexible multilayer sparse approximations of matrices and applications, JSTSP, 2016]
[T. Dao et al., Learning fast algorithms for linear transforms using butterfly factorizations, ICML, 2019.]
- Hierarchical factorization (butterfly algorithms)
[Y. Li et al., Butterfly factorization, MMS, 2015]


## Contributions

(1) We prove that the butterfly factorization is essentially unique.

$$
\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}=\overline{\mathbf{X}}^{(1)} \ldots \overline{\mathbf{X}}^{(J)} \Longrightarrow\left(\mathbf{X}^{(\ell)}\right)_{\ell=1}^{\lrcorner} \sim\left(\overline{\mathbf{X}}^{(\ell)}\right)_{\ell=1}^{J}
$$

## Overview of this talk

## Butterfly factorization problem

$\min _{\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad$ such that $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$.

- Gradient-descent method
[Le Magouarou et al., Flexible multilayer sparse approximations of matrices and applications, JSTSP, 2016]
[T. Dao et al., Learning fast algorithms for linear transforms using butterfly factorizations, ICML, 2019.]
- Hierarchical factorization (butterfly algorithms)
[Y. Li et al., Butterfly factorization, MMS, 2015]


## Contributions

(1) We prove that the butterfly factorization is essentially unique.

$$
\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}=\overline{\mathbf{X}}^{(1)} \ldots \overline{\mathbf{X}}^{(J)} \Longrightarrow\left(\mathbf{X}^{(\ell)}\right)_{\ell=1}^{J} \sim\left(\overline{\mathbf{X}}^{(\ell)}\right)_{\ell=1}^{J}
$$

(2) Factors are recovered by a flexible hierarchical factorization algorithm.

## Overview of this talk

## Butterfly factorization problem

$\min _{\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\jmath)}}\left\|\mathbf{Z}-\mathbf{X}^{(1)} \mathbf{X}^{(2)} \ldots \mathbf{X}^{(J)}\right\|_{F}, \quad$ such that $\operatorname{supp}\left(\mathbf{X}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}$.

- Gradient-descent method
[Le Magouarou et al., Flexible multilayer sparse approximations of matrices and applications, JSTSP, 2016]
[T. Dao et al., Learning fast algorithms for linear transforms using butterfly factorizations, ICML, 2019.]
- Hierarchical factorization (butterfly algorithms)
[Y. Li et al., Butterfly factorization, MMS, 2015]


## Contributions

(1) We prove that the butterfly factorization is essentially unique.

$$
\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}=\overline{\mathbf{X}}^{(1)} \ldots \overline{\mathbf{X}}^{(J)} \Longrightarrow\left(\mathbf{X}^{(\ell)}\right)_{\ell=1}^{\lrcorner} \sim\left(\overline{\mathbf{X}}^{(\ell)}\right)_{\ell=1}^{J}
$$

(2) Factors are recovered by a flexible hierarchical factorization algorithm.
(3) The algo. is numerically faster, more accurate than gradient-descent.

## Hierarchical factorization algorithm Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}{ }^{(4)}$ such that:


$\operatorname{supp}\left(\mathbf{X}^{(2)}\right) \subseteq$

## $\operatorname{supp}\left(\mathbf{X}^{(3)}\right)$ <br> 



## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:
$\operatorname{supp}\left(\mathbf{X}^{(2)}\right) \subseteq$
$\operatorname{supp}\left(\mathbf{X}^{(4)}\right) \subseteq$ \#

## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}{ }^{(4)}$ such that:

## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}{ }^{(4)}$ such that:
$\sup \left(\mathbf{X}^{(2)}\right) \subseteq$ \#



## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:
$\operatorname{supp}\left(\mathbf{X}^{(2)}\right) \subseteq \approx$



How to recover the partial products?

## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:

How to recover the partial products? $\rightarrow$ use their known supports
Lemma (Supports of the partial products)

$$
\operatorname{supp}\left(\mathbf{X}^{(1)}\right) \subseteq=\mathbf{S}_{b \mathrm{~b}}^{(1)} \quad \operatorname{supp}\left(\mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)} \subseteq=\mathbf{S}_{\mathrm{bf}}^{(2)} \mathrm{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}\right.
$$

Hierarchical factorization algorithm Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:


How to recover the partial products? $\rightarrow$ use their known supports
Lemma (Supports of the partial products)

Two-layer fixed-support problem:

$$
\min _{\mathrm{A}, \mathbf{B}}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

## Two-layer fixed-support sparse matrix factorization

$$
\min _{\mathrm{A}, \mathrm{~B}}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Two-layer fixed-support sparse matrix factorization $\min _{\mathrm{A}, \mathrm{B}}\|\mathbf{Z}-\mathbf{A B}\|_{F}$, s.t. $\operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}$

Fact: $\mathbf{A B}=\sum_{i=1}^{N} \mathbf{A}_{\bullet, i} \mathbf{B}_{i, \boldsymbol{\bullet}}$.

Two-layer fixed-support sparse matrix factorization

$$
\min _{\mathrm{A}, \mathrm{~B}}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Fact: $\mathbf{A B}=\sum_{i=1}^{N} \mathbf{A}_{\bullet}, \mathbf{B}_{i, \boldsymbol{\bullet}}$.
Constraint on the pair of factors

$$
\begin{aligned}
& \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\text {N }}=\mathbf{S}_{\mathrm{bf}}^{(1)} \\
& \operatorname{supp}(\mathrm{B}) \subseteq
\end{aligned}
$$

Two-layer fixed-support sparse matrix factorization

$$
\min _{A, B}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Fact: $\mathbf{A B}=\sum_{i=1}^{N} \mathbf{A}_{\bullet, i} \mathbf{B}_{i, \boldsymbol{\bullet}}$.

Constraint on the pair of factors

$$
\begin{aligned}
& \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{N}^{2}=\mathbf{S}_{\mathrm{bf}}^{(1)} \\
& \operatorname{supp}(\mathrm{B}) \subseteq
\end{aligned}
$$

Constraint on the rank-one matrices

$$
\begin{aligned}
& \operatorname{supp}\left(\mathbf{A}_{\bullet, 1} \mathbf{B}_{1, \bullet}\right) \subseteq \Longrightarrow=\mathcal{S}_{1} \\
& \operatorname{supp}\left(\mathbf{A}_{\bullet}, 2 \mathbf{B}_{2, \bullet}\right) \subseteq \quad=\mathcal{S}_{2} \\
& \operatorname{supp}\left(\mathbf{A}_{\bullet, N} \mathbf{B}_{N, \bullet}\right) \subseteq \square=\mathcal{S}_{N}
\end{aligned}
$$

Two-layer fixed-support sparse matrix factorization

$$
\min _{\mathrm{A}, \mathrm{~B}}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Constraint on the rank-one matrices

$$
\begin{aligned}
& \operatorname{supp}\left(\mathbf{A}_{\bullet}, \mathbf{B}_{1, \bullet}\right) \subseteq \underset{\square}{\square}=\mathcal{S}_{1}
\end{aligned}
$$

Theorem ([Le et al. 2022; Zheng et al. 2023])
The rank-one matrices have pairwise disjoint supports.

Two-layer fixed-support sparse matrix factorization

$$
\min _{A, B}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Constraint on the rank-one matrices

$$
\begin{aligned}
& \operatorname{supp}\left(\mathbf{A}_{\bullet}, 1 \mathbf{B}_{1, \bullet}\right) \subseteq=\mathcal{S}_{1}
\end{aligned}
$$

Theorem ([Le et al. 2022; Zheng et al. 2023])
The rank-one matrices have pairwise disjoint supports. Consequently:
(1) there exists a polynomial algorithm to find an optimal solution to ( $\star$ )

Two-layer fixed-support sparse matrix factorization

$$
\min _{A, B}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Constraint on the rank-one matrices

$$
\begin{aligned}
& \operatorname{supp}\left(\mathbf{A}_{\bullet}, \mathbf{B}_{1, \bullet}\right) \subseteq=\mathcal{S}_{1}
\end{aligned}
$$

Theorem ([Le et al. 2022; Zheng et al. 2023])
The rank-one matrices have pairwise disjoint supports. Consequently:
(1) there exists a polynomial algorithm to find an optimal solution to ( $\star$ )
(2) the solution is essentially unique in the noiseless setting.

Two-layer fixed-support sparse matrix factorization

$$
\min _{A, B}\|\mathbf{Z}-\mathbf{A B}\|_{F}, \text { s.t. } \operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(1)}, \operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Constraint on the rank-one matrices

$$
\begin{aligned}
& \operatorname{supp}\left(\mathbf{A}_{\bullet, 1} \mathbf{B}_{1, \bullet}\right) \subseteq \underset{=}{\square}=\mathcal{S}_{1}
\end{aligned}
$$

## Theorem ([Le et al. 2022; Zheng et al. 2023])

The rank-one matrices have pairwise disjoint supports. Consequently:
(1) there exists a polynomial algorithm to find an optimal solution to ( $\star$ )
(2) the solution is essentially unique in the noiseless setting.

Algorithm: (1) Extract the submatrices $\mathbf{Z}_{\mid \mathcal{S}_{i}}, i=1, \ldots, N$
(2) Perform best rank-one approximation for each submatrix

## Hierarchical factorization algorithm

Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:


The two-layer procedure is repeated recursively.
Lemma (Support of the partial products)

$$
\operatorname{supp}\left(\mathrm{X}^{(1)}\right) \subseteq=\mathrm{S}_{\mathrm{bf}}^{(1)}
$$

$$
\operatorname{supp}\left(\mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)} \subseteq \square=\mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(4)}\right.
$$

Corresponding rank-one supports are pairwise disjoint.

## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:

The two-layer procedure is repeated recursively.
Lemma (Support of the partial products)

$$
\operatorname{supp}\left(X^{(2)}\right) \subseteq=S_{b t}^{(2)}
$$

Corresponding rank-one supports are pairwise disjoint.

## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:

The two-layer procedure is repeated recursively.
Lemma (Support of the partial products)

$$
\operatorname{supp}\left(\mathbf{X}^{(3)}\right) \subseteq \underset{\sum_{2}}{\sum_{8}}=\mathbf{S}_{\mathrm{bf}}^{(3)}
$$

$$
\operatorname{supp}\left(\mathbf{X}^{(4)}\right) \subseteq \boldsymbol{B}_{3}=\mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Corresponding rank-one supports are pairwise disjoint.

## Hierarchical factorization algorithm

 Let $\mathbf{Z}:=\mathbf{X}^{(1)} \mathbf{X}^{(2)} \mathbf{X}^{(3)} \mathbf{X}^{(4)}$ such that:

The two-layer procedure is repeated recursively.
Lemma (Support of the partial products)

$$
\operatorname{supp}\left(\mathbf{X}^{(3)}\right) \subseteq \underset{\sum_{2}}{\sum_{8}}=\mathbf{S}_{\mathrm{bf}}^{(3)}
$$

$$
\operatorname{supp}\left(\mathbf{X}^{(4)}\right) \subseteq \boldsymbol{B}^{3} \mathbf{N}_{4}=\mathbf{S}_{\mathrm{bf}}^{(4)}
$$

Corresponding rank-one supports are pairwise disjoint.
$\left\{X^{(\ell)}\right\}_{\ell=1}^{4}$ are recovered from $\mathbf{Z}$, up to scaling ambiguities.

## Uniqueness of butterfly factorization

## Theorem ([Zheng et al. 2023])

Except for trivial degeneracies, the butterfly factorization $\mathbf{Z}:=\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}$ is essentially unique, up to unavoidable scaling ambiguities:

$$
\left\{\begin{array}{l}
\overline{\mathbf{X}}^{(1)} \ldots \overline{\mathbf{X}}^{(J)}=\mathbf{Z} \\
\forall \ell \in[J], \operatorname{supp}\left(\overline{\mathbf{X}}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}
\end{array} \quad \Longrightarrow\left(\overline{\mathbf{X}}^{(\ell)}\right)_{\ell=1}^{\lrcorner} \sim\left(\mathbf{X}^{(\ell)}\right)_{\ell=1}^{\lrcorner}\right.
$$

The unique factors are recovered from the hierarchical algorithm.

## Uniqueness of butterfly factorization

## Theorem ([Zheng et al. 2023])

Except for trivial degeneracies, the butterfly factorization $\mathbf{Z}:=\mathbf{X}^{(1)} \ldots \mathbf{X}^{(J)}$ is essentially unique, up to unavoidable scaling ambiguities:

$$
\left\{\begin{array}{l}
\overline{\mathbf{X}}^{(1)} \ldots \overline{\mathbf{X}}^{(J)}=\mathbf{Z} \\
\forall \ell \in[J], \operatorname{supp}\left(\overline{\mathbf{X}}^{(\ell)}\right) \subseteq \mathbf{S}_{\mathrm{bf}}^{(\ell)}
\end{array} \quad \Longrightarrow\left(\overline{\mathbf{X}}^{(\ell)}\right)_{\ell=1}^{J} \sim\left(\mathbf{X}^{(\ell)}\right)_{\ell=1}^{\lrcorner}\right.
$$

The unique factors are recovered from the hierarchical algorithm.
Proof: at level $\ell$, the intermediate matrix to factorize is

$$
\mathbf{M}:=\underbrace{\left(\mathbf{D}^{-1} \mathbf{X}^{(\ell)}\right)}_{\mathbf{A}} \underbrace{\left(\mathbf{X}^{(\ell+1)} \ldots \mathbf{X}^{(J)} \tilde{\mathbf{D}}\right)}_{\mathbf{B}} .
$$

The algorithm recovers (A,B) because of optimality \& uniqueness in ( $\star$ ).

## Flexible choice in the hierarchical order

The algorithm works for any factor-bracketing binary tree.


This extends existing work that consider only 3 trees.
[ Y . Liu et al., Butterfly factorization via randomized matrix-vector multiplications, SISC, 2021]

## Flexible choice in the hierarchical order

The algorithm works for any factor-bracketing binary tree.


This extends existing work that consider only 3 trees.
[Y. Liu et al., Butterfly factorization via randomized matrix-vector multiplications, SISC, 2021]

## Faster and more accurate in the noiseless setting

Approximate $\mathbf{Z}:=\mathbf{D F T}_{512}$ by a product of $J=9$ butterfly factors:


The theoretical complexity of the algorithm is $\mathcal{O}\left(N^{2}\right)$.

## Also more robust in the noisy setting

Approximate $\mathbf{Z}:=\mathbf{D F T}_{512}+\sigma \mathbf{W}$ by a product of $J=9$ butterfly factors:


## FA $\mu$ ST Toolbox: faust.inria.fr

Efficient implem. of fast transforms and algorithms for sparse matrix fact.

- Python \& MATLAB wrappers (C++ core, GPU compatible)
- PYPI install: pip install pyfaust

Ex: butterfly factorization
1 from pyfaust.fact import butterfly
2 from pyfaust import Faust, wht
3
$4 \mathrm{H}=$ wht (8).toarray ()
5 F = butterfly (H, type='bbtree')
6 (F-H).norm() / Faust(H).norm()
7 \# Output: 1.2560739454502295e-15


Factorization of the Hadamard matrix with a balanced tree.

## Conclusion and perspectives

(1) The butterfly structure captures many common fast transforms.
(2) We proved the essential uniqueness of the butterfly factorization.
(3) Butterfly factors are recovered by a flexible hierarchical algorithm.

Hierarchical algorithm: $\mathcal{O}\left(N^{2}\right)$


$$
\mathbf{Z} \in \mathbb{R}^{N \times N} \text { (dense) }
$$

Storage: $\mathcal{O}\left(N^{2}\right)$
Cost for evaluation: $\mathcal{O}\left(N^{2}\right)$

$$
\mathbf{x} \mapsto \mathbf{Z} \mathbf{x}
$$

$$
\tilde{\mathbf{Z}}:=\mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \ldots \mathbf{X}^{(1)}
$$

Storage: $\mathcal{O}(N \log N)$
Cost for evaluation: $\mathcal{O}(N \log N)$

$$
\mathbf{x} \mapsto \tilde{\mathbf{Z}} \mathbf{x}
$$

## Conclusion and perspectives

(1) The butterfly structure captures many common fast transforms.
(2) We proved the essential uniqueness of the butterfly factorization.
(3) Butterfly factors are recovered by a flexible hierarchical algorithm.

Hierarchical algorithm: $\mathcal{O}\left(N^{2}\right)$

$$
\begin{array}{r}
\mathbf{Z} \in \mathbb{R}^{N \times N} \text { (dense) } \\
\text { Storage: } \mathcal{O}\left(N^{2}\right) \\
\text { Cost for evaluation: } \mathcal{O}\left(N^{2}\right) \\
\mathbf{x} \mapsto \mathbf{Z} \mathbf{x}
\end{array}
$$



$$
\tilde{\mathbf{Z}}:=\mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \ldots \mathbf{X}^{(1)}
$$

$$
\text { Storage: } \mathcal{O}(N \log N)
$$

$$
\text { Cost for evaluation: } \mathcal{O}(N \log N)
$$

$$
x
$$

$$
\mathbf{x} \mapsto \tilde{\mathbf{Z}} \mathbf{x}
$$

## On going work

- Approximation error of the hierarchical algorithm
- Taking into account row and column permutations
- Efficient training of neural networks with butterfly structure


## Thank you for your attention!

To know more:
目 Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval Fast learning of fast transforms, with guarantees In ICASSP, 2022.
(1) Q.-T. Le, E. Riccietti, and R. Gribonval Spurious valleys, NP-hardness, and tractability of sparse matrix factorization with fixed support In SIAM Journal on Matrix Analysis and Applications, 2022.

固 L. Zheng, E. Riccietti, and R. Gribonval Efficient identification of butterfly sparse matrix factorizations In SIAM Journal on Mathematics of Data Science, 2023.

