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Léon Zheng, Elisa Riccietti, Rémi Gribonval
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Sparse matrix factorization
Given a matrix Z and J ≥ 2, find sparse factors X(1), . . . ,X(J) such that

Z ≈ X(1)X(2) . . .X(J).

Fast matrix-vector multiplication: Zx ≈ X(1)X(2) . . .X(J)x.

Example (Fourier integral operators)

Fast evaluation of u(x) =
∑

k∈Ω e2πiΦ(x ,k)f (k), for all x ∈ X?

Factorize K := (e2πiΦ(x ,k))x∈X ,k∈Ω ≈ X(1) . . .X(J).

[E. Candes et al., A fast butterfly algorithm for the computation of Fourier integral operators, MMS, 2009]

Example (Compress neural network)

Factorize weight matrices in
overparameterized neural networks.

[T. Dao et al., Monarch: Expressive structured matrices for efficient and accurate training, ICML, 2022]
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How to factorize a matrix into sparse factors?

Problem formulation

min
X(1),...,X(J)

∥∥∥Z− X(1)X(2)...X(J)
∥∥∥
F
, such that {X(`)}` are sparse.

Choices for sparsity constraint?

1 Classical sparsity patterns: k-sparsity by column and/or by row

2 Fixed-support constraint: supp(X(`)) ⊆ S(`) for ` = 1, . . . , J.

A difficult problem

Sparse coding is NP-hard.
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]

Fixed-support setting is NP-hard for J = 2 factors.
[Le et al., Spurious valleys, NP-hardness, and tractability of sparse matrix fact. with fixed support, SIMAX, 2022]

Gradient-based methods lack guarantees.

When is the problem well-posed? Uniqueness of solution? Stability?
→ Still an open question.
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What makes the butterfly structure a good choice?
Case of square matrices of size N = 2J .

Definition (Butterfly structure)

For each ` ∈ [J], supp(X(`)) ⊆ S
(`)
bf

, where S
(`)
bf := I2`−1 ⊗ [ 1 1

1 1 ]⊗ IN/2` .

Example for
N = 16, with 4
factors.

1 Enables fast O(N logN) matrix-vector multiplication
2 Captures common fast transforms (Hadamard, DFT, DCT, ...)

[T. Dao et al., Kaleidoscope: An efficient, learnable representation for all structured linear maps, ICLR, 2020]

3 Makes the sparse matrix factorization problem well-posed
[L. Zheng et al., Efficient identification of butterfly sparse matrix factorizations, SIMODS, 2023]
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Overview of this talk

Butterfly factorization problem

min
X(1),...,X(J)

∥∥∥Z− X(1)X(2)...X(J)
∥∥∥
F
, such that supp(X(`)) ⊆ S

(`)
bf .

Gradient-descent method
[Le Magouarou et al., Flexible multilayer sparse approximations of matrices and applications, JSTSP, 2016]

[T. Dao et al., Learning fast algorithms for linear transforms using butterfly factorizations, ICML, 2019.]

Hierarchical factorization (butterfly algorithms)
[Y. Li et al., Butterfly factorization, MMS, 2015]

Contributions

1 We prove that the butterfly factorization is essentially unique.

X(1)...X(J) = X̄(1)...X̄(J) =⇒ (X(`))J`=1 ∼ (X̄(`))J`=1

2 Factors are recovered by a flexible hierarchical factorization algorithm.

3 The algo. is numerically faster, more accurate than gradient-descent.
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Hierarchical factorization algorithm
Let Z := X(1)X(2)X(3)X(4) such that:

How to recover the partial products? → use their known supports

Lemma (Supports of the partial products)

Two-layer fixed-support problem:

min
A,B
‖Z− AB‖F , s.t. supp(A) ⊆ S

(1)
bf , supp(B) ⊆ S

(2)
bf S

(3)
bf S

(4)
bf (?)
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(2)
bf S

(3)
bf S

(4)
bf (?)
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Fact: AB =
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i=1 A•,iBi ,•.

Constraint on the pair of factors

Constraint on the rank-one matrices
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Two-layer fixed-support sparse matrix factorization

min
A,B
‖Z− AB‖F , s.t. supp(A) ⊆ S

(1)
bf , supp(B) ⊆ S

(2)
bf S

(3)
bf S

(4)
bf (?)

Constraint on the rank-one matrices

Theorem ([Le et al. 2022; Zheng et al. 2023])

The rank-one matrices have pairwise disjoint supports.

Consequently:

1 there exists a polynomial algorithm to find an optimal solution to (?)

2 the solution is essentially unique in the noiseless setting.

Algorithm: 1 Extract the submatrices Z|Si , i = 1, . . . ,N

2 Perform best rank-one approximation for each submatrix
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Hierarchical factorization algorithm

Let Z := X(1)X(2)X(3)X(4) such that:

The two-layer procedure is repeated recursively.

Lemma (Support of the partial products)

Corresponding rank-one supports are pairwise disjoint.

{X(`)}4
`=1 are recovered from Z, up to scaling ambiguities.
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Uniqueness of butterfly factorization

Theorem ([Zheng et al. 2023])

Except for trivial degeneracies, the butterfly factorization Z := X(1) . . .X(J)

is essentially unique, up to unavoidable scaling ambiguities:{
X̄(1)...X̄(J) = Z

∀` ∈ [J], supp(X̄(`)) ⊆ S
(`)
bf

=⇒ (X̄(`))J`=1 ∼ (X(`))J`=1

The unique factors are recovered from the hierarchical algorithm.

Proof: at level `, the intermediate matrix to factorize is

M := (D−1X(`))︸ ︷︷ ︸
A

(X(`+1) . . .X(J)D̃)︸ ︷︷ ︸
B

.

The algorithm recovers (A,B) because of optimality & uniqueness in (?).
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Flexible choice in the hierarchical order

The algorithm works for any factor-bracketing binary tree.

Column-wise factorization Hybrid factorization Row-wise factorization

This extends existing work that consider only 3 trees.
[Y. Liu et al., Butterfly factorization via randomized matrix-vector multiplications, SISC, 2021]
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Flexible choice in the hierarchical order

The algorithm works for any factor-bracketing binary tree.

Unbalanced tree

Balanced tree (new)

This extends existing work that consider only 3 trees.
[Y. Liu et al., Butterfly factorization via randomized matrix-vector multiplications, SISC, 2021]
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Faster and more accurate in the noiseless setting

Approximate Z := DFT512 by a product of J = 9 butterfly factors:

Ours

Gradient-based

The theoretical complexity of the algorithm is O(N2).
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Also more robust in the noisy setting

Approximate Z := DFT512 + σW by a product of J = 9 butterfly factors:

Ours

Gradient-based
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FAµST Toolbox: faust.inria.fr
Efficient implem. of fast transforms and algorithms for sparse matrix fact.

Python & MATLAB wrappers (C++ core, GPU compatible)

PYPI install: pip install pyfaust

Ex: butterfly factorization

210 211 212 213 214 215

Matrix size

100

101

102

103

104

Ti
m

e 
(s

)

naive Python
pyfaust C++

Factorization of the Hadamard matrix
with a balanced tree.
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Conclusion and perspectives
1 The butterfly structure captures many common fast transforms.
2 We proved the essential uniqueness of the butterfly factorization.
3 Butterfly factors are recovered by a flexible hierarchical algorithm.

Storage:

(dense)

Storage:

Cost for evaluation: Cost for evaluation:

Hierarchical algorithm:

On going work

Approximation error of the hierarchical algorithm

Taking into account row and column permutations

Efficient training of neural networks with butterfly structure
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Thank you for your attention!

To know more:

Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval
Fast learning of fast transforms, with guarantees
In ICASSP, 2022.

Q.-T. Le, E. Riccietti, and R. Gribonval
Spurious valleys, NP-hardness, and tractability of sparse matrix
factorization with fixed support
In SIAM Journal on Matrix Analysis and Applications, 2022.

L. Zheng, E. Riccietti, and R. Gribonval
Efficient identification of butterfly sparse matrix factorizations
In SIAM Journal on Mathematics of Data Science, 2023.
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